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ON THE MULTISET-REPRESENTABLE GRAPHS

Jihoon Choi

Abstract. A graph is said to be [[k]]-representable if we can assign
a multiset on {1, 2, . . . , k} to each vertex such that two vertices are
adjacent if and only if their corresponding multisets are comparable
under set inclusion. A graph is said to be multiset-representable if
it is [[k]]-representable for some positive integer k. In this paper,
we study the basic properties of multiset-representability.

1. Introduction

All the terms used in this paper can be found in [1]. For simplicity,
we denote the set {1, 2, . . . , k} by [k]. The sets of positive integers and
nonnegative integers are denoted by N and N0, respectively. A multiset
on [k] is a function m : [k] → N0, which is also called a multiplicity
function. For example, the function m : [4] → N0 defined by m(1) = 3,
m(2) = 0, m(3) = 1, and m(4) = 2 is a multiset on [4], which can be
represented by {1, 1, 1, 3, 4, 4}, or simply as 111344. The multiset whose
values are all zero is called the emptyset and is denoted by ∅.

Let [[k]] denote the family of multisets on [k]. We define an irreflexive
relation ≺ on [[k]] such that m1 ≺ m2 if and only if m1(x) ≤ m2(x) for
each x ∈ [k]. For example, {1, 3} ≺ {1, 3, 4} ≺ {1, 1, 3, 4, 4, 4}. Note
that {1, 3, 4} ̸≺ {1, 3, 4} since ≺ is defined to be irreflexive. It is easy to
see that ≺ is a strict partial order on [[k]].

Let G be a simple graph. We say that G is [[k]]-representable if we
can injectively assign a multiset mv on [k] to each vertex v such that xy
is an edge in G if and only if mx ≺ my or my ≺ mx. In other words, G
is [[k]]-representable if G is the comparability graph of (V (G),≺), where
V (G) is a family of multisets on [k]. Such an assignment on V (G) is
called a [[k]]-assignment. The smallest positive integer k such that G
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is [[k]]-representable is called the multiset-index of G and is denoted by
im(G). If there is no such integer k, we define im(G) = ∞. If G is [[k]]-
representable for some positive integer k, or equivalently, if im(G) <∞,
then G is said to be multiset-representable.

We present two examples. The trivial graph K1 with vertex v is [[1]]-
representable by assigning ∅ or {1} to v. Therefore, im(K1) = 1. The
path graph P4 = v1v2v3v4 is [[2]]-representable by the multiset assign-
ment v1 = {1}, v2 = {1, 2}, v3 = {2}, and v4 = {2, 2}, thus im(P4) ≤ 2.

2. The [[k]]-representability of graphs

Every multiset-representable graph is a comparability graph. There-
fore, multiset-representable graphs are always transitively orientable. In
fact, the following theorem holds:

Theorem 2.1. A graph is multiset-representable if and only if it is
transitively orientable.

Proof. It is sufficient to prove the ”if” part. We will prove the stronger
statement: If a graph G on n vertices has a transitive orientationD, then
there exists an [[n]]-assignment ϕ : V (G) → [[n]] such that (x, y) ∈ A(D)
if and only if ϕ(y) ≺ ϕ(x).

We proceed by induction on n. If n = 1, then G is [[1]]-representable
by assigning {1} to the single vertex of G. Assume that the statement
holds for n ≥ 1. Now, consider a graph G with n + 1 vertices and
a transitive orientation D. By transitivity, D has a vertex u with an
indegree of 0. Then D − u is a transitive orientation of G − u. By the
induction hypothesis, there exists an [[n]]-assignment ϕ : V (G − u) →
[[n]] such that (x, y) ∈ A(D − u) if and only if ϕ(y) ≺ ϕ(x). To extend
ϕ to V (G), we define ϕ(u) as follows:

ϕ(u)(i) =

{
max{ϕ(v)(i) | v ∈ N+

D (u)}, for 1 ≤ i ≤ n;

1, for i = n+ 1.

It is easy to check that the extended ϕ is the desired [[n + 1]]-
assignment of G.

Odd cycles of length at least 5 are not comparability graphs. There-
fore, they are examples of non-multiset-representable graphs. The next
proposition shows that [[k]]-representability is hereditary.

Proposition 2.2. Every induced subgraph of a [[k]]-representable
graph is also [[k]]-representable.
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Proof. SupposeG has a [[k]]-assignment ϕ. Take an induced subgraph
H of G. Then the restriction of ϕ to V (H) naturally yields a [[k]]-
assignment of H. Hence, H is [[k]]-representable.

An apex of a graph is a vertex that is adjacent to all the other vertices.

Proposition 2.3. Let G be a [[k]]-representable graph with k ≥
2. Then, adding an isolated vertex or an apex still results in a [[k]]-
representable graph.

Proof. Let ϕ be a [[k]]-assignment of G. We denote ϕ(v) by ϕv for
each v ∈ V (G). We define a new multiplicity function ϕ′v : [k] → N0

such that ϕ′v(1) = ϕv(1) + 2 and ϕ′v(i) = ϕv(i) for i ̸= 1. Clearly, the
map ϕ′ defined by ϕ′(v) = ϕ′v remains a valid [[k]]-assignment of G.

Let V (G) = {v1, . . . , vr}. If we add a new vertex w with ϕ′(w) = {1},
then w ≺ vi for each i ∈ [r]. Thus, w is comparable with every other
vertex because each vertex v1, . . . , vr contains at least two 1’s in its [[k]]-
assignment under ϕ′. Therefore, G together with an apex w remains
[[k]]-representable.

Let M = max{ϕ′v(2) | v ∈ V (G)}. If we add a new vertex u with
ϕ′(u) = {1, 2, 2, . . . , 2} (one copy of 1 and M +1 copies of 2), then none
of the vertices v1, . . . , vr is comparable with u since u contains fewer 1’s
and more 2’s than the other vertices. Therefore, G together with an
isolated vertex u remains [[k]]-representable.

We can characterize [[k]]-representable graphs from a geometric point
of view, which will be useful in computing the multiset-index. We write
Nk
0 = N0×N0×· · ·×N0 (k times). For two k-tuples x = (x1, . . . , xk) and

y = (y1, . . . , yk) ∈ Nk
0, we write x ≤ y if xi ≤ yi for each i = 1, . . . , k.

Theorem 2.4. A graph G is [[k]]-representable if and only if there
exists an injective function f : V (G) → Nk

0 such that, for any distinct
vertices x and y, the following property holds:

(⋆) xy ∈ E(G) if and only if f(x) ≤ f(y) or f(y) ≤ f(x).

Proof. SupposeG is a [[k]]-representable graph with a [[k]]-assignment
ϕ. Denote ϕ(v) by ϕv for each v ∈ V (G). We define f : V (G) → Nk

0 by
f(v) = (ϕv(1), ϕv(2), . . . , ϕv(k)). Since ϕ is injective, f is also injective.
Moreover, f satisfies the property (⋆) by the definition.

Conversely, suppose there exists an injective function f : V (G) →
Nk
0 that satisfies the property (⋆). For each v ∈ V (G), we define the

multiplicity function ϕv : [k] → N0 by (ϕv(1), ϕv(2), . . . , ϕv(k)) = f(v).
Then the function ϕ that maps v ∈ V (G) to ϕv is a [[k]]-assignment of
G.
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Theorem 2.4 tells us that a given graph G is [[2]]-representable if and
only if we can place the vertices of G as lattice points in the plane R2,
where adjacent vertices are connected by a line with a non-positive slope
(i.e., negative, zero, or undefined slope).

The union of two graphs G1 and G2, denoted by G1 ∪ G2, is the
graph defined by V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) =
E(G1) ∪ E(G2). The join of G1 and G2 is the graph obtained from
G1 ∪ G2 by adding all the edges connecting a vertex in G1 to a vertex
in G2.

Proposition 2.5. Assume that k ≥ 2. Then the join of two [[k]]-
representable graphs is also [[k]]-representable. Moreover, the union of
two [[k]]-representable graphs is also [[k]]-representable.

Proof. For convenience, we adopt the following notation: for a func-
tion f : [k] → N0 and a nonnegative integer M , let f +M : [k] → N0

denote the function defined by (f +M)(v) = f(v) +M .

Let G1 and G2 be [[k]]-representable graphs with [[k]]-assignments ϕ1
and ϕ2, respectively. Define:

• M = 1 +max {ϕ1(v)(i) | v ∈ V (G1), i = 1, . . . , k}
• M1 = 1 +max {ϕ1(v)(1) | v ∈ V (G1)}
• M2 = 1 +max {ϕ2(v)(2) | v ∈ V (G2)}
To show that G1 ∨ G2 is [[k]]-representable, we define a function

ψ : V (G1) ∪ V (G2) → [[k]] by:

• For each v1 ∈ V (G1), ψ(v1) = ϕ1(v1).
• For each v2 ∈ V (G2), ψ(v2) = ϕ2(v2) +M .

This construction ensures that for all v1 ∈ V (G1) and v2 ∈ V (G2),
we have ψ(v1) ≺ ψ(v2), because the entries in ψ(v2) are uniformly larger
than those in ψ(v1). Additionally, the comparability condition is pre-
served within each V (G1) and V (G2) due to the properties of ϕ1 and
ϕ2. Therefore, ψ is a valid [[k]]-assignment for G1 ∨ G2, showing that
the join is [[k]]-representable.

To show that G1 ∪ G2 is [[k]]-representable, we define a function
η : V (G1) ∪ V (G2) → [[k]] as follows:

• For each v1 ∈ V (G1), η(v1)(i) =

{
ϕ1(v1)(i) +M2, if i = 2;

ϕ1(v1)(i), otherwise.

• For each v2 ∈ V (G2), η(v2)(i) =

{
ϕ2(v2)(i) +M1, if i = 1;

ϕ2(v2)(i), otherwise.
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This construction ensures that within V (G1) and V (G2), compara-
bility is preserved, as the modified entries do not interfere with the
comparability conditions. Moreover, no edges can form between G1 and
G2 because all vertices in G1 have fewer 1’s and more 2’s than any vertex
in G2. Hence, η is a [[k]]-assignment of G1 ∪G2, proving that the union
is also [[k]]-representable.

Corollary 2.6. Let G be a graph, and let G1, . . . , Gr be its com-
ponents. Then im(G) = max {im(Gi) | i = 1, . . . , r}.

Proof. Since G is the union of G1, . . . , Gr, the result follows directly
from Proposition 2.5.

Corollary 2.6 tells us that it is sufficient to study the multiset-indices
of connected graphs.

3. On the multiset-indices of graphs

In this section, we investigate the multiset-indices of some graphs.

Proposition 3.1. A graph has multiset-index 1 if and only if it is a
complete graph.

Proof. Suppose that a graph G has multiset-index 1. Then G has
a [[1]]-assignment. This means that every vertex is assigned a multiset
consisting solely of copies of 1, so every pair of vertices is comparable.
Thus, G is complete.

Conversely, suppose thatG is a complete graph with vertices v1, . . . , vn.
By assigning a multiset consisting of i copies of 1 to each vertex vi, we
obtain a [[1]]-assignment of G. Hence, G has multiset-index 1.

Proposition 3.2. Every edgeless graph with at least two vertices
has multiset-index 2.

Proof. Let G be an edgeless graph with vertices v1, . . . , vn for some
n ≥ 2. For each vertex vi, we define a multiplicity function mvi : [k] →
N0 by mvi(1) = i− 1 and mvi(2) = n− i+ 1. Then no two of v1, . . . , vn
are comparable and therefore, G is [[2]]-representable. Since G has at
least two vertices, G is not complete and so it is not [[1]]-representable
by Proposition 3.1. Hence im(G) = 2.

Proposition 3.3. Every complete bipartite graph Km,n has the
multiset-index:

im(Km,n) =

{
1, if m = n = 1

2, otherwise.
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Proof. If m = 1 and n = 1, then Km,n = K2 and so im(Km,n) =
1 by proposition 3.1. Assume m > 1 or n > 1. Then im(Km,n) >
2 by the same proposition. For each positive integer r, let Ir denote
the edgeless graph on r vertices Then Km,n is isomorphic to Im ∨ In.
By Propositions 2.5 and 3.2, im(Km,n) = im(Im ∨ In) ≤ 2. Hence
im(Km,n) = 2.

Proposition 3.4. The path Pn on n vertices (n ≥ 2) has multiset-
index 2.

Proof. We denote Pn = v1v2 · · · vn and define a function ϕ : V (Pn) →
[[2]] as follows: If i is odd, then ϕ(vi) a multiset on [2] consisting of ⌈n2 ⌉−
i+1
2 1’s and i−1

2 2’s; if i is even, then ϕ(vi) is a multiset on [2] consisting of

⌈n2 ⌉−
i
2 1’s and i

2 2’s. For example, when n = 5, the function ϕ : V (P5) →
[[2]] is given by ϕ(v1) = 11, ϕ(v2) = 112, ϕ(v3) = 12, ϕ(v4) = 122,
ϕ(v5) = 22. Briefly speaking, the multisets ϕ(v1), ϕ(v2), . . . , ϕ(vn) are
obtained one by one by adding 2, deleting 1, adding 2, deleting 1, and so
on. By the construction, it is easy to see that ϕ gives a [[2]]-assignment
of Pn.

Consider the cycle Cn = v1v2 · · · vnv1. Since C3 = K3, we have
im(C3) = 1. When n = 4, the function ϕ : {v1, v2, v3, v4} → [[2]] defined
by ϕ(v1) = 1, ϕ(v2) = 112, ϕ(v3) = 2, ϕ(v4) = 122 is a [[2]]-assignment
of C4. Therefore im(C4) = 2.

Theorem 3.5. For any n ≥ 5, Cn is not [[2]]-representable.

Proof. If n is odd, then Cn is not transitively orientable, so it cannot
be [[2]]-representable. Now, suppose C2n is [[2]]-representable for some
integer n ≥ 3. Let ϕ : V (C2n) → [[2]] be a [[2]]-assignment. Since C2n

is triangle-free, neither ϕ(vi−1) ≺ ϕ(vi) ≺ ϕ(vi+1) nor ϕ(vi−1) ≻ ϕ(vi) ≻
ϕ(vi+1) can occur in C2n. Therefore, for each i, either ϕ(vi−1) ≺ ϕ(vi) ≻
ϕ(vi+1) or ϕ(vi−1) ≻ ϕ(vi) ≺ ϕ(vi+1) must hold. Hence, we may assume:

ϕ(v1) ≺ ϕ(v2) ≻ ϕ(v3) ≺ ϕ(v4) ≻ · · · ≺ ϕ(v2n) ≻ ϕ(v1).

Note that ϕ(v1), ϕ(v3), ϕ(v5), . . . , ϕ(v2n−1) are pairwise incomparable.
Among them, we may assume that ϕ(v3) has the fewest 1’s.

Case 1: ϕ(v5)(1) ≤ ϕ(v1)(1). In this case, we have ϕ(v3)(1) ≤
ϕ(v5)(1) ≤ ϕ(v1)(1) and ϕ(v3)(2) ≥ ϕ(v5)(2) ≥ ϕ(v1)(2). Since ϕ(v2)
is comparable with both ϕ(v1) and ϕ(v3), either ϕ(v2) ≺ ϕ(v1) and
ϕ(v2) ≺ ϕ(v3), or ϕ(v1) ≺ ϕ(v2) and ϕ(v3) ≺ ϕ(v2) must hold. In
either case, ϕ(v2) must also be comparable with ϕ(v5), which leads to a
contradiction.
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Case 2: ϕ(v5)(1) ≥ ϕ(v1)(1). In this case, we reverse the roles of v1
and v3 from Case 1 and proceed with a parallel argument to show that
ϕ(v4) must be comparable with ϕ(v1), which again leads to a contradic-
tion.

Therefore, C2n is not [[2]]-representable for any integer n ≥ 3.

4. Concluding remarks

It would be an interesting problem to characterize [[k]]-representable
graph for a given integer k. In addition, we hope to find a graph with
arbitrarily large multiset-index.
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